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In this paper, we determine when two semigroups of full contraction 

mappings with restricted range are isomorphic. Furthermore, we give 

necessary and sufficient conditions for an element in the semigroup to be 

regular and characterize all the Green’s equivalences on the semigroup.  
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 Bu makalede, kısıtlamalı görüntüye sahip tüm daraltma tasvirlerinin iki yarı 

grubunun ne zaman izomorf olacaklarını bulduk. Ayrıca, bir yarı grup 

elemanının regüler olması için gerek ve yeter koşulları verdik ve  bir yarı 

gruptaki bütün Green denkliklerini karakterize ettik. 
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İdealler 

Kısıtlamalı görüntü 

Green bağıntıları 
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with a restricted range. Kadirli Uygulamalı Bilimler Fakültesi Dergisi, 2(1): 1-14. 

 

1. Introduction   

Denote [n] to be a finite n chain {1, 2,..., n}. A map say α which has its domain and 

range both subsets of [n] is said to be a transformation of the set [n]. A transformation α 

which has its domain subset of [n] is said to be partial. The collection of all partial 

transformations on [n] is known as the semigroup of partial transformations and is usually 
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denoted by Pn. A partial transformation whose domain is equal to [n] is known as the full (or 

total) transformation. The collection of all full transformations on [n] is known as the 

semigroup of full transformations, which is usually denoted by Tn. The algebraic and 

combinatorial properties of the semigroups Pn and Tn  have been extensively studied over the 

years, see for example (Howie, 1966; Howie et al., 1988; Garba, 1990; Ganyushkin and 

Mazorchuk, 2009). 

A map α   Tn  is said to be a contraction if for all x, y   [n], |xα - yα| ≤ |x - y|. The 

collection of all full contraction maps is known as the semigroup of full contraction maps, and 

is usually denoted by  

     CTn  = {α  Tn  : for all x, y   [n], |xα - yα| ≤ |x - y|}.              (1) 

In 2013, Umar and Alkharousi (2012) proposed the study of the semigroups of 

contraction maps on a finite n chain. In this proposal, notations of these semigroups and their 

various subsemigroups were given. We shall adopt the same notations in this paper. Let Y be a 

non empty subset of [n]. Denote T ([n], Y) to be the collection of all α   Tn  such that [n]α   Y 

. i.e.,  

T ([n], Y) = {α  Tn : [n]α   Y }. 

The collection T ([n], Y) is known as the semigroup of transformation with restricted 

range with the usual composition of functions. The algebraic properties as well as the 

combinatorial properties of the semigroup T ([n], Y) have been studied extensively by various 

scholars, see for example (Nentthein et al., 1975; Sanwong and Sommanee, 2008; 

Sanwong, 2011; Lei, 2013; Sommanee and Sanwong, 2013). Symons (1975) was the first to 

introduce and study the semigroup T([n], Y). He described all its automorphisms and 

determined when the semigroup T(      ) is isormophic to T(   ,   ) for             . In 

general, the semigroup T([n], Y) is not regular, as such the need to characterize its regular 

elements. Nenthein et al. (2005) gave a characterization for the regular elements of T ([n], Y) 

and obtained the number of regular elements in T ([n], Y). Sanwong and Sommanee (2008) 

gave a necessary and sufficient conditions for the semigroup T ([n], Y) to be regular. In the 

case that T([n], Y) is not regular, they obtained its largest regular subsemigroup as: 

F([n], Y) = {α   T ([n], Y): [n]α = Y α}. 

Moreover, they characterized all the Green’s equivalences on T ([n], Y) and obtained its 

maximal inverse subsemigroup. The effect of characterizing the Green’s equivalences on a 

semigroup, is to sort-out the elements of the semigroup. For proper understanding of Green’s 

equivalences, we refer the reader to Howie (1995). Later, Sanwong et al. (2009) described all 

the maximal and minimal congruences on T ([n], Y). In 2011, Mendes-Goncalves and 
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Sullivan (2011) obtained all the ideals of T ([n], Y). Sanwong (2011) shows that every regular 

semigroup S can be embedded in F(  , S) (where F((  , S) denote the largest regular 

semigroup in T(   , S), for an arbitrary semigroup S). Furthermore, he obtained the 

characterization of Green’s relations and ideals of F([n], Y) when Y is a nonempty finite 

subset of [n]. The rank of the semigroup T ([n], Y) was computed by Fernandes and Sanwong 

in 2014. Earlier, Sullivan (2008) took the semigroup which consist of all linear 

transformations from a vector space V into a fixed subspace W of V and characterized its 

Green’s relations and ideals. Lei (2013) showed that T ([n], Y) is a right abundant semigroup 

but not left abundant whenever Y is a proper subset of [n]. 

Let Y be a nonempty subset of [n] and CTn be as defined in equation (1). Write  

                 CT ([n], Y) = {α   CTn : [n]α   Y}.                   (2) 

Notice that for all α, β   CT([n], Y), Im αβ   Im β   Y as such CT([n], Y) is a 

subsemigroup of CTn. Notice also that if Y = [n], then CT([n], Y) = CTn.  

In this paper, we consider the subsemigroup CT([n], Y) and study some of its algebraic 

properties. In section 1, we give introduction and in section 2, we give the basic definitions 

needed in subsequent sections, and for proper understanding of the content of the paper. In 

section 3, we investigate when CT(      ) is isormophic to CT (   ,   ) for      ,       and 

moreover we show that CT([n], Y) is the union of its left ideals when Y is totally non convex. 

In section 4, we give complete characterization of regular elements of CT([n], Y). Moreover, 

we deduce a characterization for regularity for the semigroup CT([n], Y). In section 5, we 

characterize all the Green’s equivalence on CT([n], Y).    

 

2. Definitions and Notations 

Let α   CT([n], Y). Denote the image set of α and |Im α|, respectively by Im α, h(α). For 

α, β   CT([n], Y), we shall write the composition of α and β as x(αoβ) = ((x)α)β for all x   [n]. 

A subset Y of [n] is said to be convex if x ≤ y (for all x, y   Y) and if there exists z   [n] such 

that x < z < y implies z   Y, and Y is said to be non-convex if it is not a convex subset of      

A subset B of a set Y is said to be a sub-convex subset of Y if B is convex. A subset Y of [n] of 

order greater than or equal to 2 is said to be totally non-convex if Y is non-convex and there is 

no sub-convex subset of Y say B whose order is greater than or equal to 2.  

For example, consider Y1 = {1, 2, 3}   {1, 2, 3, 4, 5} = [5], Y2 = {1, 4, 5}   [5] and Y3 

= {1, 3, 5}   (Green, 1951). It is easy to verify that    is convex and {1, 2}, {2, 3} are both 

sub-convex subsets of Y1. However, Y2 is non-convex and {4, 5} is a sub-convex subset of Y2. 
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Moreover,   is totally non-convex, since it has no sub-convex subset of order greater than or 

equal to 2. However, {1}, {3} and {5} are sub-convex subsets of   , each of order 1. 

 

Remark 2.0. It is worth noting that, every totally non-convex subset of     is non-

convex, but the converse is not necessarily true. 

 Let α   CT([n], Y), we shall write α in block notation as:  

                   













 pxxx

AAA p





21

21
     (1 ≤ p ≤ n),             (3) 

where Im α = {x + 1, x + 2, x + 3, . . . , x + p}   Y and (x + i)α
-1

 = Ai (1 ≤ i ≤ p) are 

equivalence classes under the relation ker α = {(x, y)   [n] × [n] : xα = yα}. The collection of 

all the equivalence classes of the relation ker α, is the partition of     usually denoted by Ker 

α, i.e., Ker α = {A1, A2, . . . , Ap} and     = A1 ∪ A2 ∪ · · · ∪ Ap (p ≤ n). A subset Tα of [n] is 

said to be a transversal of the partition Ker α if |Tα| = p and |Ai ∩ Tα| = 1, (1 ≤ i ≤ p). A 

transversal Tα is said to be admissible if for every xi , xj   Tα = {xi : xi   Ai, 1 ≤ i ≤ p}, |xi - xj| 

≤ |ai - aj| for all ai   Ai , aj   Aj (i, j   {1, 2, . . . , p}) (see (Umar and Zubairu, 2018). A 

partition Ker γ (for γ   CT([n], Y)) is said to be a refinement of the partition Ker α if ker γ   

ker α (see Umar and Zubairu, 2018). Thus, if Ker γ = {A1
ا
, A2

ا
, . . . , Ap

ا
} and Ker α = {A1, A2, 

. . . , Ap}, then p ≤ s. A map α   CT([n], Y) is said to be an isometry if and only if |xα - yα| = |x 

- y| for all x, y   [n]. If we consider α as expressed in equation (3), then α is an isometry if and 

only if |(x + i) - (x + j)| = |ai - aj | for all ai   Ai and aj   Aj  (i, j  { 1, 2, . . . , p}). In other 

words, α is an isometry if and only if for all                    for some integer 

  (called a translation) or             for some integer   (called a reflection) (Umar and 

Zubairu, 2018). An element a in a semigroup S is said to be an idempotent if and only if a
2
 = 

a. A semigroup S is said to be simple if S has no ideals other than itself. For basic concept in 

semigroup theory, we refer the reader to Higgins (1972); Howie (1995); Ganyushkin and 

Mazorchuk (2009). 

 

3. Isomorphism properties and ideals 

 In this section, we investigate when two semigroups say CT([n],   ) and CT([n],   ) are 

isomorphic for nonempty subsets    and    of    . 

Theorem 3.1. Let        be non-empty subsets of    . Then CT([n],   ) and CT([n],   ) 

are isomorphic if and only if there exists an isometry from    to   . 
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Proof: Suppose there exists an isomorphism    CT([n],    )     CT([n],    ). Assume 

    , for some    CT([n],    ) and   CT(         . Since   is an isomorphism, then 

|    |  |    |. Notice that      and      are convex say      = {a+1, a+2, …, a+p}    

and      = {b+1, b+2,…, b+p}    for some         In particular,      =    and      = 

  . Then, the map defined by          is a translation and the map defined by   

             is a reflection, as required.  

Conversely, suppose there exists an isometry from    to   . If the isometry is a 

translation,          , then for    CT([n],  ), let            be define by  

                       .  

Notice that, for          

            |       |  |           |  |   |   |         |  |     |  

|   |   

Moreover, it is easy to see that Im    = {         }     Therefore,     

CT([n],   ).  

Thus, the map    CT([n],  )    CT([n],  ) define by       is well define and satisfy 

the property                To see this, let      CT([n],    ) and       such that   

    Thus       implies                and therefore          which implies 

                

To prove the property              if  

 

,
21

21


















paaa

AAA p




 












kbbb

BBB k





21

21
  CT([n],  ). Then 















riaiaia

CCC riii





1

1
 CT([n],  ). 

Now, 
















pbbb

AAA p





21
'

21
  and 












kbbb

BBB k





21
'

21
  CT           Thus 















ribibib

CCC riii





1
''

1
  CT([n],  ).  

Therefore )(    












ribibib

CCC riii





1

1
= '' . It now follows that for 

    CT          we have           .    is a homomorphism. One can easily show 

that   is a bijection and hence it is an isomorphism. 
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Now, if the isometry is a reflection, i.e.,               . Then for    CT 

([n],   ), let            be define by                              . Then, 

the map    CT([n],  )     CT([n],  ) defined by       is well-defined and satisfy the 

property            . It is easy to see (as in the previous paragraph) that   is an 

isomorphism. Hence, the proof. 

The next results show that the semigroup CT        can be express as a disjoint union 

of left ideals. We begin our investigation with the following lemma. 

 

Lemma 3.2. Let       be a disjoint union of nonempty convex subsets      

{           }  satisfying the following conditions: 

1.         if and only if    ; 

2.                

3.                    . 

Then, each CT            {           }  is a left ideal of CT       . 

Proof. Notice that each       {           }  is nonempty. Thus for       the map  

    








x

n][
CT         

and so each CT          . Now, let    CT         for       and    CT([n], Y), 

then  

                   . 

Thus,    CT          as required. 

As a consequences, we have the following theorem. 

Theorem 3.3. Let       be a disjoint union of nonempty convex subsets      

{         }      satisfying the following conditions: 

1.         if and only if    ; 

2.                 

3.                    . 

Then,                      and CT([n], Y) ⋃   
   CT        . 

Proof. Notice that by Lemma 3.2, CT         is a left ideal of CT([n], Y) for all 

     . Thus it is now the case of showing two sets are equal.  

Now let   CT([n], Y). Suppose, Im      then there exists       such that 

        . Thus, Im       ,    CT          ⋃   
   CT        ,    ⋃   

   CT        . 

Thus 
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CT([n], Y)  ⋃   
   CT                                              

Now, let    ⋃   
   CT        . Notice that         for all    . Thus, there exists 

  {     } such that   CT        ,  Im        ,   Im     . Therefore,   CT([n], 

Y). Thus  

 ⋃  
 
   CT                                                         

Hence  by equation (i) and (ii) we have ⋃   
   CT           CT([n], Y), as required. 

If   is convex then CT([n], Y) can not be expressed as a union of its left ideal as in the remark 

below. 

Remark 3.4. If   is convex, then   does not satisfy the condition (3) of Lemma 3.2. 

Thus, CT([n],Y) can not be expressed as a union of CT                 

 

4. Regularity in the semigroup CT([n], Y) 

An element a in a semigroup S is regular if there exists b   S such that a = aba. A 

semigroup S is said to be regular if every element of S is regular. For an arbitrary semigroup 

S, we shall denote the set of regular elements of S by Reg (S).  

 In Nentthein et al. (2005), Nenthein et al., characterized the regular elements of the 

semigroup T([n], Y) as in the following lemma: 

Lemma 4.1. (Nentthein et al. (2005), Theorem 2.1). For   T([n], Y), the following 

statements are equivalent: 

(i)   RegT([n], Y); 

(ii)         ; 

(iii)           for every      ; 

(iv)          for every        . 

It is worth noting that the characterization given above by Nenthein et al., does not hold 

for the semigroup CT([n], Y). To see this, consider [n] = {1, 2 ,…, 6}, Y ={1, 2, 3, 4, 5} and 

choose α  as: 









4321

5}6,4{}3,2{1
 . Now as in the above lemma,   satisfy condition (ii), 

thus    is regular in T([n], Y). However, one can easily verify that no β in CT (Hall, 1982, Y) 

that satisfy α = α β α. Hence, α is not regular in CT([n], Y). Thus, there is need to come up 

with a characterization for the regular elements in CT([n], Y).  

It is well known that CTn is regular for 1 ≤ n ≤ 3 but not regular for n ≥ 4 (see Umar and 

Zubairu, 2018). Moreover, it is easy to verify that CT([n], Y) = CTn  for 1 ≤ n ≤ 2. However, 

the semigroup CT([n], Y) is not regular for n ≥ 3 as we shall see in this section.  
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The following lemmas and remark are found useful in our subsequent discussion. 

Lemma 4.2. (Fernandes and Sanwong, 2014, Lemma 1.2). Let α  CTn and let |Im α| = 

p. Then Im α is convex.  

Lemma 4.3. (Umar and Zubairu, 2018, Corollary 1.13). Let α  CTn. Then α is regular 

if and only if Ker α has a convex transversal. 

Remark 4.4. (Umar and Zubairu, 2018, Remark 1.14). A transversal Tα of Ker α (α 

 CTn) is admissible if and only if Tα is convex.  

Next, we now characterize the regular elements of CT([n], Y) in the theorem below.  

Theorem 4.5. Let CT([n], Y) be as defined in equation (1) and let α   CT([n], Y) be as 

expressed in equation (3). Then α is regular if and only if Ker α has a convex transversal Tα 

  Y .  

Proof. Let α   CT([n], Y) be regular. Notice that α  CTn. Thus by Lemma 4.3, α has a 

convex transversal say Tα = {t + 1, t + 2, . . . , t + p} for    . Notice that and Tα is convex, 

thus by Remark 4.4, Tα  is admissible in CTn. But for Tα to be admissible in CT([n], Y), Tα 

must be a  

subset of Y . 

Conversely, suppose Ker α has a convex transversal Tα   Y say Tα = {t+1, t+2, . . . , 

t+p} and since α   CT([n], Y) we may (without loss of generality) write α as: 


















psss

AAA p





21

21
 , 

where {s + 1, s + 2, . . . , s + p p 1, s + p}   Y . Now define β as:  















ptpttt

npspsss

121

},...,{12}1,...,2,1{




 . 

It is clear that β is a contraction and since Im β = Tα   Y, then β   CT([n], Y). It follows 

easily that α β α = α. 

We now prove the following result, which give a necessary and sufficient condition for the 

semigroup CT([n], Y) to be regular. 

Theorem 4.6. The semigroup CT([n], Y) is regular if and only if Y is totally non-convex 

subset of [n].  

Proof. Let CT ([n], Y) be a regular semigroup (i.e., Ker α has a convex transversal say 

Tα   Y for all α   CT ([n], Y)). Suppose by way of contradiction that Y is either convex or 

non-convex. 

Case 1. Suppose   is convex. Let Y = {a + 1, . . . , a + r}   [n] (for some r ≥ 2). Choose  
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α= .
21

},,1{},1,,1{













aa

nraraa 
 

Then, clearly α   CT([n], Y) is of rank 2 and also Tα = {a+r, a+r + 1} is a convex transversal 

of Ker α. Notice that Tα is not a subset of Y. Therefore by Theorem 4.5, α is not regular, a 

contradiction. 

Case 2. Suppose   is non-convex. This implies there exists a sub-convex subset of   of order 

greater than or equal to 2, thus, the results follows from Case 1. 

Conversely, if Y is totally non-convex subset of [n]. Then CT ([n], Y) = 
















Ya

a

n
:

][
. 

Notice that each element in CT([n], Y) is an idempotent and as such regular, as required.  

We now have the following corollary.  

Corollary 4.7. If 1 < |Y | < n and   has of sub-convex subset of order greater than 1. 

Then the semigroup CT ([n], Y) is not regular.  

Proof. Suppose by way of contradiction that CT ([n], Y) is regular. Let x, y   Y be such that x 

≠ y. Let α   CT ([n], Y) be define as 








yx

AA 21
and choose c   [n]   Y such that c = max(xα

-1
). 

Thus by Theorem 4.5, α must have a convex transversal say Tα subset of Y, but clearly, c   Tα 

which contradicts the fact that Tα   Y . The results follow.  

As a consequence we readily have the following result. 

Corollary 4.8. The semigroup CT ([n], Y) is not regular for all n  . 

Proof. Let  











221

3}2,1{



 n
   CT([n], {1,2}). 

 Notice that Tα ={           }   . Therefore, by Theorem 4.5,   is not regular, as required. 

Corollary 4.9. If Y is totally non-convex subset of    . Then each α   CT([n],Y) is an 

idempotent of rank 1.  

Proof. Notice that each element in CT ([n], Y) is a constant map of height 1 and as such is an 

idempotent of rank 1.  

Product of idempotents is not necessary an idempotent as demonstrated in the example below. 

Example 4.10. In the semigroup CT([n], Y), the product of idempotents is not necessary 

an idempotent. To see this, let (Howie, 1966)  = {1,…,9}, Y = {1, 2, 3, 7, 8, 9} and choose 











321

}9,,3{21 
 and 










789

}7,3{}8,6,4,2{}9,5,1{
  elements of CT (Howie, 1966, 
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Y). Then clearly α and β are idempotents in CT (Howie, 1966, Y). The products











789

}9,,3{21 


 

is not idempotent.  

Proposition 4.11. If Y is totally non-convex subset of [n]. Then the semigroup CT([n], 

Y) is simple.  

Proof. The result follows since each element in CT([n], Y) is of rank 1.  

Theorem 4.12. Suppose Y is totally non-convex subset of [n]. If |Y | = r, then |CT([n], 

Y)| = r.  

Proof. Since Y has no sub-convex subset of order greater than or equal to 2, then CT([n], 

Y) contains element of rank 1 and obviously there are r of them. 

Remark 4.13. It is worth noting from the proceeding results that, the semigroup CT([n], 

Y) is regular if   is totally non-convex subset of      otherwise CT([n], Y) is not regular. 

 

5. Green’s relations on the semigroup CT([n], Y)  

Let S be a semigroup without identity element and S
1
 be a monoid. The five equivalence 

relations on S known as Green’s relations were first introduced by J. A. Green’s in 1995. The 

primary aim of defining these relations is to study the structure of a semigroup S. These 

relations are defined as follows. For a, b   S, a   b if and only if S
1
a = S

1
b (i.e., a and b 

generates the same principal left ideal, here a and b are said to be   related); a   b if and only 

if aS
1
 = bS

1
 (i.e., a and b generates the same principal right ideal, here a and b are said to be   

related); a   b if and if S
1
aS

1
 = S

1
 bS

1
 (a and b generate the same principal two sided ideal, in 

this case, a and b are said to be   related).The relation   =  ∩   while the relation   is a 

join of the relations   and    i.e.,   =   ◦  . These relations are all equivalences on S. For 

more details on Green’s relations we refer the reader to Green (1951); Higgins (1992); 

Howie (1995); Ganyushkin and Mazorchuk (2009). The Green’s relations for the semigroup 

CTn and some of its subsemigroups have been investigated in Umar and Zubairu (2018). 

Here, we also deduce the characterizations for the Green’s relations on the semigroup CT ([n], 

Y). Throughout this section, we will consider 1 < |Y | < n.  

Now denote 
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Before we begin our investigation, we first note the following results from Umar and 

Zubairu (2018) which are found to be useful in what to follows. 
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Theorem 5.1. (Umar and Zubairu, 2021), Corollary 5.3). Let α, β   CTn be as expressed 

in equation (5). Then  

(i) (α, β)     if and only if Ker α and Ker β have convex refinement partitions, Ker γ1 and 

Ker γ2 (for some γ1 and γ2 in CTn), respectively, such that there exists either a translation τi   

σi  satisfying τiα = σiβ or a reflection τi   σs-i+1 satisfying τiα = σs-i+1β for all i = 1, . . . , s (s ≥ 

p), where Tγ1 = {τ1, . . . , τs} and Tγ2 = {σ1, . . . , σs}, are the convex transversals of Ker γ1 and 

Ker γ2, respectively; 

(ii) (α, β)      if and only if ker α = ker β;  

(iii) (α, β)     if and only if ker α = ker β and Ker α and Ker β have convex refinement 

partitions, Ker γ1 and Ker γ2 (for some γ1 and γ2 in CTn), respectively, such that there exists 

either a translation τi   σi  satisfying τiα = σiβ or a reflection τi   σs-i+1 satisfying τiα = σs-i+1β 

for all i = 1, . . . , s (s ≥ p), where Tγ1 = {τ1, . . . , τs} and Tγ2 = {σ1, . . . , σs}, are the convex 

transversals of Ker γ1 and Ker γ2, respectively; 

(iv) (α, β)     if and only if there exist isometries ϑ1 and ϑ2 from Ker γ1 to Ker γ2 and from 

Im α to Im β, respectively.  

We now characterize the Green’s relations on the semigroup CT ([n], Y). 

Theorem 5.2. Let α, β   CT ([n], Y). Then, α   β if and only if there exist refinements 

Ker γ1, Ker γ2 (for some γ1, γ2   CT ([n], Y)) of Ker α and Ker β respectively, such that Ker 

γ1, Ker γ2 have admissible transversals Tγ1 ={τ1, τ2, . . . , τs}, Tγ2 = {σ1, σ2, . . . , σs} both 

subset of Y or Tγ1 = Tγ2 = [n] with the property that there exists either a translation τi   σi  

satisfying τiα = σiβ or a reflection τi   σs-i+1 satisfying τiα = σs-i+1β for all i = 1, . . . , s (s ≥ p). 

Proof. Let α, β   CT ([n], Y) be such that α   β. Then there exist γ1, γ2   CT ([n], Y)
1
 such that  

α = γ1β and β = γ2α. 

Notice that, Im α, Im β   Y , and also α, β  CTn . Thus, by Theorem 5.1, Ker α and Ker β 

have refinements partitions say Ker γ1 and Ker γ2, respectively, (for some γ1, γ2   CTn) with 

admissible transversals say Tγ1 ={τ1, τ2, . . . , τs}, Tγ2 = {σ1, σ2, . . . , σs} such that there exists 

either a translation τi   σi  satisfying τiα = σiβ or a reflection τi   σs-i+1 satisfying τiα = σs-i+1β 

for all i   {1, 2, . . . , s} (s ≥ p). Notice that, Tγ1 and Tγ2 are admissible,  the maps   
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1 and are in CTn . 

However, for δ1, δ2 to be in CT ([n], Y), Im δ1 and Im δ2 must be subsets of Y (i.e., Tδ1 = {τ1, 

τ2, . . . , τs}   Y and Tδ2 = {σ1, σ2, . . . , σs}   Y) or Im γ1 = Im γ2 = [n].  



 

12 

 

Conversely, Suppose there exist refinements Ker γ1 and Ker γ2 (for some γ1, γ2   

CT([n], Y)) of Ker α and Ker β respectively, such that Ker γ1 and Ker γ2 have admissible 

transversals Tγ1 ={τ1, τ2, . . . , τs} and Tγ2 = {σ1, σ2, . . . , σs}, respectively, both subset of Y or 

Tγ1 = Tγ2 = [n] with the property that there exists either a translation τi   σi  satisfying τiα = 

σiβ or a reflection τi   σs-i+1 satisfying τiα = σs-i+1β for all i   {1, 2, . . . , s} (s ≥ p).  

If Tγ1 = Tγ2 = [n]. Then define γ1 = γ2 = id[n] . Thus, γ1, γ2 are in CT ([n], Y) and α = id[n] β 

= β. Hence, α   β.  

Now if there is a translation translation τi   σi satisfying τiα = σiβ (i = 1,. . . ,s). Then 

define 
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1 and . Then it is easy to see that γ1 and γ2 are in 

CT([n], Y).  

 If there is a reflection τi   σs-i+1 satisfying τiα = σs-i+1β for all i   {1, 2, . . . , s} (s ≥ p). 

Then define 
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. Then one can easily show 

that γ1 and γ2 are contractions in CT ([n], Y). Hence, α   β.  

Theorem 5.3. Let α, β   CT ([n], Y). Then α   β if and only if ker α = ker β.  

Proof. Let α, β   CT ([n], Y) and suppose α   β. This implies that there exist γ1, γ2   CT([n], 

Y)
1
 such that α = βγ1 and β = αγ2. Suppose (x, y)   ker α. Then xβ = x(αγ1) = (xα)γ1 = (yα)γ1 = 

y(αγ1) = yβ. This implies that ker α   ker β. Similarly, ker β   ker α. Thus, ker α = ker β 

follows easily.  

Conversely, suppose ker α = ker β. We may write α and β as 

.
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
 . Notice that, Im γ1 = Im α, Im γ2 = Im β 

and since Im α, Im β   Y, we conclude that Im γ1, Im γ2   Y . Therefore, it easily follows that 

γ1, γ2   CT([n], Y). Thus, α   β. 

Theorem 5.4. Let α, β   CT ([n], Y). Then, α   β if and only if there exist isometries υ1 

and υ2  from Ker γ1 to Ker γ2 and from Im α to Im β, respectively.  

Proof. The results follows easily from Theorem 5.2 and Theorem 5.3. 
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6. Conclusions 

In this paper, we give a necessary and sufficient conditions for two semigroups of full 

contraction mappings with a restricted range to be isomorphic. Also, we have shown that 

whenever   is a union of nonempty convex subsets      {           }  satisfying 

certain conditions, the semigroup CT([n], Y) can be written as the union of left ideals of 

CT       . Further, we characterized the regular elements for the semigroup CT ([n], Y), and 

also investigate the conditions that make the semigroup CT([n], Y) regular. Moreover, we 

characterized all its Green’s equivalences. 
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