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1. Introduction

Denote [n] to be a finite n chain {1, 2,..., n}. A map say « which has its domain and
range both subsets of [n] is said to be a transformation of the set [n]. A transformation o
which has its domain subset of [n] is said to be partial. The collection of all partial

transformations on [n] is known as the semigroup of partial transformations and is usually
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denoted by P,. A partial transformation whose domain is equal to [n] is known as the full (or
total) transformation. The collection of all full transformations on [n] is known as the
semigroup of full transformations, which is usually denoted by T, The algebraic and
combinatorial properties of the semigroups P, and T, have been extensively studied over the
years, see for example (Howie, 1966; Howie et al., 1988; Garba, 1990; Ganyushkin and
Mazorchuk, 2009).

A map a €T, is said to be a contraction if for all x, y € [n], |xa - ya| < |x - y|. The
collection of all full contraction maps is known as the semigroup of full contraction maps, and
is usually denoted by

CTn ={a €T, :forall x,y € [n], |xa - ya| <|x-Y|}. Q)

In 2013, Umar and Alkharousi (2012) proposed the study of the semigroups of
contraction maps on a finite n chain. In this proposal, notations of these semigroups and their
various subsemigroups were given. We shall adopt the same notations in this paper. Let Y be a
non empty subset of [n]. Denote T ([n], Y) to be the collection of all & € T,, such that [nJa € Y
.l.e.,

T(nl,Y)={a €T :[nNla S Y}

The collection T ([n], Y) is known as the semigroup of transformation with restricted
range with the usual composition of functions. The algebraic properties as well as the
combinatorial properties of the semigroup T ([n], Y) have been studied extensively by various
scholars, see for example (Nentthein et al., 1975; Sanwong and Sommanee, 2008;
Sanwong, 2011; Lei, 2013; Sommanee and Sanwong, 2013). Symons (1975) was the first to
introduce and study the semigroup T([n], Y). He described all its automorphisms and
determined when the semigroup T([n], Y;) is isormophic to T([n],Y,) forY;, ¥, € [n]. In
general, the semigroup T([n], Y) is not regular, as such the need to characterize its regular
elements. Nenthein et al. (2005) gave a characterization for the regular elements of T ([n], Y)
and obtained the number of regular elements in T ([n], Y). Sanwong and Sommanee (2008)
gave a necessary and sufficient conditions for the semigroup T ([n], Y) to be regular. In the
case that T([n], Y) is not regular, they obtained its largest regular subsemigroup as:

F(IN, Y)={a €T ([n],Y): [nJa =Y a}.

Moreover, they characterized all the Green’s equivalences on T ([n], Y) and obtained its
maximal inverse subsemigroup. The effect of characterizing the Green’s equivalences on a
semigroup, is to sort-out the elements of the semigroup. For proper understanding of Green’s
equivalences, we refer the reader to Howie (1995). Later, Sanwong et al. (2009) described all

the maximal and minimal congruences on T ([n], Y). In 2011, Mendes-Goncalves and
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Sullivan (2011) obtained all the ideals of T ([n], Y). Sanwong (2011) shows that every regular
semigroup S can be embedded in F(S', S) (where F((S*, S) denote the largest regular
semigroup in T(S!, S), for an arbitrary semigroup S). Furthermore, he obtained the
characterization of Green’s relations and ideals of F([n], Y) when Y is a nonempty finite
subset of [n]. The rank of the semigroup T ([n], Y) was computed by Fernandes and Sanwong
in 2014. Earlier, Sullivan (2008) took the semigroup which consist of all linear
transformations from a vector space V into a fixed subspace W of V and characterized its
Green'’s relations and ideals. Lei (2013) showed that T ([n], Y) is a right abundant semigroup
but not left abundant whenever Y is a proper subset of [n].
Let Y be a nonempty subset of [n] and CT,, be as defined in equation (1). Write
CT([n],Y)={a eCT,:[n]a € Y} 2

Notice that for all o, g € CT([n], Y), Im af S Im g <Y as such CT([n], Y) is a
subsemigroup of CT,. Notice also that if Y = [n], then CT([n], Y) = CT,.

In this paper, we consider the subsemigroup CT([n], Y) and study some of its algebraic
properties. In section 1, we give introduction and in section 2, we give the basic definitions
needed in subsequent sections, and for proper understanding of the content of the paper. In
section 3, we investigate when CT([n], Y;) is isormophic to CT ([n], Y,) for ¥;,Y,, € [n] and
moreover we show that CT([n], Y) is the union of its left ideals when Y is totally non convex.
In section 4, we give complete characterization of regular elements of CT([n], Y). Moreover,
we deduce a characterization for regularity for the semigroup CT([n], Y). In section 5, we

characterize all the Green’s equivalence on CT([n], Y).

2. Definitions and Notations

Let « € CT([n], Y). Denote the image set of & and |Im a|, respectively by Im «, h(a). For
a, f € CT([n], Y), we shall write the composition of & and S as x(aof) = ((X)a)p for all x € [n].
A subset Y of [n] is said to be convex if x <y (for all x, y € Y) and if there exists z € [n] such
that x <z <y impliesz € Y, and Y is said to be non-convex if it is not a convex subset of [n].
A subset B of a set Y is said to be a sub-convex subset of Y if B is convex. A subset Y of [n] of
order greater than or equal to 2 is said to be totally non-convex if Y is non-convex and there is
no sub-convex subset of Y say B whose order is greater than or equal to 2.

For example, consider Y1 = {1, 2,3} = {1, 2,3,4,5}=[5], Y2={1, 4,5} < [5] and Y3
= {1, 3, 5} < (Green, 1951). It is easy to verify that Y; is convex and {1, 2}, {2, 3} are both

sub-convex subsets of Y;. However, Y, is non-convex and {4, 5} is a sub-convex subset of Y.



Moreover, Ysis totally non-convex, since it has no sub-convex subset of order greater than or

equal to 2. However, {1}, {3} and {5} are sub-convex subsets of Y3, each of order 1.

Remark 2.0. It is worth noting that, every totally non-convex subset of [n] is non-
convex, but the converse is not necessarily true.
Let o € CT([n], Y), we shall write « in block notation as:

[xill szz X'A:’pJ (d=p=n) )

where Ima={x+1,x+2 x+3,...,x+p}ycSYand (x +i)a’ = A (1 <i <p) are
equivalence classes under the relation ker a = {(X, y) € [n] x [n] : xa = ya}. The collection of
all the equivalence classes of the relation ker o, is the partition of [n] usually denoted by Ker
a,ie, Ker a={Ay, Ay, ..., A}and [n]=A; UA; U- - UA, (p <n). A subset T, of [n] is
said to be a transversal of the partition Ker a if [T,/ =pand JAiN T, =1, (1 <i<p). A
transversal T, is said to be admissible if for every x; , X; € T, = {X; : Xi € A;, 1 <1 <p}, |Xi - Xj|
<lai-aj forall s, e Ai, €A (i, je{l, 2,. .., p}) (see (Umar and Zubairu, 2018). A
partition Ker y (for y € CT([n], Y)) is said to be a refinement of the partition Ker o if ker y €
ker o (see Umar and Zubairu, 2018). Thus, if Ker y = {A;, A7, ..., Ay} and Ker a = {Aq, A,
.., Ap}, thenp <s. Amap a € CT([n], Y) is said to be an isometry if and only if [xa - ya| = |x
- y| for all x, y € [n]. If we consider « as expressed in equation (3), then « is an isometry if and
only if |[(x +1)-(x+j)|=lai-a;|forallas€e Ajand g€ A; (i,j€{ 1, 2, ..., p}). In other
words, «a is an isometry if and only if for all 1 < i < p, a; » x; + e for some integer
e (called a translation) or a; » x,_;4, + e for some integer e (called a reflection) (Umar and
Zubairu, 2018). An element a in a semigroup S is said to be an idempotent if and only if a =
a. A semigroup S is said to be simple if S has no ideals other than itself. For basic concept in
semigroup theory, we refer the reader to Higgins (1972); Howie (1995); Ganyushkin and
Mazorchuk (2009).

3. Isomorphism properties and ideals

In this section, we investigate when two semigroups say CT([n], ¥;) and CT([n], ;) are
isomorphic for nonempty subsets Y; and Y, of [n].

Theorem 3.1. Let Y;, Y, be non-empty subsets of [n]. Then CT([n], Y;) and CT([n], )

are isomorphic if and only if there exists an isometry from Y; to Y,.



Proof: Suppose there exists an isomorphism ¢: CT([n], Y;) — CT([n], ;). Assume
ap = B, for some a € CT([n], Y;) and g €CT((|n], Y»). Since ¢ is an isomorphism, then
|Im a| = |Im B|. Notice that Im « and Im f are convex say Im a = {a+1, a+2, ..., atp}S Y,
and Im g = {b+1, b+2,..., btp}C Y, for some a,b € Z. In particular, I ma =Y; and Im g =
Y,. Then, the map defined by a+i ~— b + i is a translation and the map defined by a +
i — b+ (p+i—1)isareflection, as required.

Conversely, suppose there exists an isometry from Y; to Y,. If the isometry is a
translation, a +i ~— b + i, then for @ € CT([n],Y;), let a’: [n] — [n] be define by

xa' = b + i whenever xa = a + i.

Notice that, for x,y € [n];

Ixa' —ya'| = [(b+ ) — b+l =il =la+i—-(a+ | =Ilxa—-yal <
lx — yl.

Moreover, it is easy to see that Im a = {b+1,..,b+ p} S Y. Therefore, a' €
CT([n], ¥2).

Thus, the map ¢: CT([n],Y;) — CT([n],Y,) define by ap = a' is well define and satisfy
the property (aB)' = a'B’. To see this, let a, 8 € CT([n], ¥;) and x € [n] such that a =
B. Thus xa = xf impliesa+i=a+j. i=j and therefore b +i = b + j, which implies
a' = p', ap = Bo.

To prove the property (aB)’' = a'f’, if

- AA A (B B, - B,
o= , = e CT([n],Y;1). Then
a+la+2 - a+p b+1b+2 . b+k

a+ia+i+1l--- a+i+r

OZﬂ — ( Ci Ci-¢—1 o C:i-¢—r j e CT([n],Yl)

Now, a':( AR A ]and p":[ B B

B
“ |e CT([n],Y,). Thus
b+1b+2--- b+p b+1b+2 - b+k

a'ﬂ'{ C G G jeCT([n],YZ).

b+i b+i+1 - b+i+r

C Ci+l Ci+r
. . . =a'p . It now follows that for
b+i b+i+1--- b+i+r

Therefore (af) ¢ = (

a, B €CT([n], Y1) we have (aB)p = papB. ¢ is a homomorphism. One can easily show

that ¢ is a bijection and hence it is an isomorphism.



Now, if the isometry is a reflection, i.e.,a+i — (b+p+i—1). Then fora € CT
([n], Y1), leta’: [n] — [n] be define by xa’ = b + (p + i — 1) whenever xa = a + i. Then,
the map ¢: CT([n],Y;) — CT([n],Y,) defined by ap = a’ is well-defined and satisfy the
property (aB)' = a'B’. It is easy to see (as in the previous paragraph) that ¢ is an
isomorphism. Hence, the proof.

The next results show that the semigroup CT([n],Y) can be express as a disjoint union

of left ideals. We begin our investigation with the following lemma.

Lemma 3.2. Let Y € [n] be a disjoint union of nonempty convex subsets B;(i €
{1,2,3,---, p < n}) satisfying the following conditions:
1. BiNB; = @ ifandonlyif i # j;
2. By <B, <B3 < <By;
3. max(B;) + 2 < min(B;41)-
Then, each CT([n], B;) (i € {1,2,3,::-,p < n}) is a left ideal of CT([n],Y).
Proof. Notice that each B; (i € {1,2,3,::-,p < n}) is nonempty. Thus for x € B;, the map

a, = ([Q]J eCT([nl], B;)
and so each CT([n], B;) # @. Now, let « € CT([n],B;) for1 < i < pand g € CT([n], Y),
then
[n]Ba = ([n]B)a € Ya S B;.

Thus, Ba €CT([n], B;), as required.
As a consequences, we have the following theorem.
Theorem 3.3. Let Y C [n] be a disjoint union of nonempty convex subsets B;(i €
{1,2,3,...,p}, p < n) satisfying the following conditions:
1. B;NB; = @ ifand only if i # j;
2. By < By <B3 < <By;
3. max(B;) + 2 < min(B;;4).
Then, 1 < min(B,;), max(B,) < nand CT([n], Y)= U?_, CT([n], B).
Proof. Notice that by Lemma 3.2, CT([n], B;) is a left ideal of CT([n], Y) for all
1 <i < p. Thus it is now the case of showing two sets are equal.
Now let &« €eCT([n], Y). Suppose, Im a € Y, then there exists 1 < i < p such that
B; =Im a. Thus, Im a € B;, @ €CT([n],B;) € UY_, CT([n],B;), a« € UY_, CT([n], B)).
Thus



CT([n], Y) € Ui, CT([n], By). ()
Now, leta € UY_; CT([n], B;). Notice that B;NB; = @ for all i # j. Thus, there exists
i €{1,--,p}such thata €CT([n],B;), Ima S B; €Y, ImacY. Therefore, a eCT([n],
Y). Thus
UP-, CT([nl, By € CT([n],Y). (i)
Hence by equation (i) and (ii) we have Ule CT([n], B;) < CT([n],Y), as required.
If Y is convex then CT([n], Y) can not be expressed as a union of its left ideal as in the remark
below.
Remark 3.4. If Y is convex, then Y does not satisfy the condition (3) of Lemma 3.2.

Thus, CT([n],Y) can not be expressed as a union of CT([n], B;)(1 < i < p).

4. Regularity in the semigroup CT([n], Y)

An element a in a semigroup S is regular if there exists b € S such that a = aba. A
semigroup S is said to be regular if every element of S is regular. For an arbitrary semigroup
S, we shall denote the set of regular elements of S by Reg (S).

In Nentthein et al. (2005), Nenthein et al., characterized the regular elements of the
semigroup T([n], Y) as in the following lemma:

Lemma 4.1. (Nentthein et al. (2005), Theorem 2.1). For a €T([n], Y), the following
statements are equivalent:

(i) a €RegT([n], Y);

(i)rana =Ya,

(i) xkera NY + @ for every x € [n];
(ivixa 1 nY # @ forevery x € ran a.

It is worth noting that the characterization given above by Nenthein et al., does not hold
for the semigroup CT([n], Y). To see this, consider [n] = {1, 2,..., 6}, Y ={1, 2, 3, 4, 5} and
1 {2,3H{4,6}5

choose a as: a=
1 2 3 4

j. Now as in the above lemma, « satisfy condition (ii),

thus « is regular in T([n], Y). However, one can easily verify that no g in CT (Hall, 1982, Y)
that satisfy a = a f a. Hence, « is not regular in CT([n], Y). Thus, there is need to come up
with a characterization for the regular elements in CT([n], Y).

It is well known that CT, is regular for 1 <n <3 but not regular for n >4 (see Umar and
Zubairu, 2018). Moreover, it is easy to verify that CT([n], Y) = CT, for 1 <n <2. However,

the semigroup CT([n], Y) is not regular for n > 3 as we shall see in this section.



The following lemmas and remark are found useful in our subsequent discussion.

Lemma 4.2. (Fernandes and Sanwong, 2014, Lemma 1.2). Let « €CT, and let |[Im a| =
p. Then Im a is convex.

Lemma 4.3. (Umar and Zubairu, 2018, Corollary 1.13). Let a €CT,. Then « is regular
if and only if Ker o has a convex transversal.

Remark 4.4. (Umar and Zubairu, 2018, Remark 1.14). A transversal T, of Ker a («
€CT,) is admissible if and only if T, is convex.

Next, we now characterize the regular elements of CT([n], Y) in the theorem below.

Theorem 4.5. Let CT([n], Y) be as defined in equation (1) and let o € CT([n], Y) be as
expressed in equation (3). Then a is regular if and only if Ker « has a convex transversal T,
cY.

Proof. Let a € CT([n], Y) be regular. Notice that o €CT,. Thus by Lemma 4.3, a has a
convex transversal say T, = {t+1,t+2,...,t+ p} fort € Z. Notice that and T, is convex,
thus by Remark 4.4, T, is admissible in CT,. But for T, to be admissible in CT([n], Y), T,
must be a
subset of Y .

Conversely, suppose Ker « has a convex transversal T, S Y say T, = {t+1, t+2, . . .,

t+p} and since « € CT([n], Y) we may (without loss of generality) write o as:
L A A - Ap
S+1s+2---s+p '
where {s+1,s+2,...,s+pp1l,s+p}<SY.Now define g as:

5 _[ {1,2,....s+15s+2 ---s+p-1 {s+p,.., n}j
t+1  t+2---t+p-1 t+p

It is clear that f is a contraction and since Im =T, € Y, then 5 € CT([n], Y). It follows
easily that o f a = a.
We now prove the following result, which give a necessary and sufficient condition for the
semigroup CT([n], Y) to be regular.

Theorem 4.6. The semigroup CT([n], Y) is regular if and only if Y is totally non-convex
subset of [n].

Proof. Let CT ([n], Y) be a regular semigroup (i.e., Ker a has a convex transversal say
T, Y for all « € CT ([n], Y)). Suppose by way of contradiction that Y is either convex or
non-convex.

Case 1. Suppose Y isconvex. LetY={a+1,...,a+r} < [n] (for some r > 2). Choose



a+l1 a+?2

_( {l...,a+1,...a+r} {a+r+1,...,n}]

Then, clearly a € CT([n], Y) is of rank 2 and also T, = {a+r, a+r + 1} is a convex transversal
of Ker a. Notice that T, is not a subset of Y. Therefore by Theorem 4.5, o is not regular, a
contradiction.

Case 2. Suppose Y is non-convex. This implies there exists a sub-convex subset of Y of order

greater than or equal to 2, thus, the results follows from Case 1.

n
Conversely, if Y is totally non-convex subset of [n]. Then CT ([n], Y) = {[a]j ‘a eY}.

Notice that each element in CT([n], Y) is an idempotent and as such regular, as required.
We now have the following corollary.
Corollary 4.7. If 1 < |Y | < n and Y has of sub-convex subset of order greater than 1.
Then the semigroup CT ([n], Y) is not regular.
Proof. Suppose by way of contradiction that CT ([n], Y) is regular. Let X, y € Y be such that x

A A

#V. Leta € CT ([n], Y) be define as (
Xy

jand choose ¢ € [n] \ Y such that ¢ = max(xa™).

Thus by Theorem 4.5, o must have a convex transversal say T, subset of Y, but clearly, c € T,
which contradicts the fact that T, € Y . The results follow.
As a consequence we readily have the following result.
Corollary 4.8. The semigroup CT ([n], Y) is not regular for all n> 3.
Proof. Let

({1,2} 3.1
o =

1 2. 2JECT([n],{l,z}).

Notice that T,={2,3,4,...,n} € Y. Therefore, by Theorem 4.5, « is not regular, as required.

Corollary 4.9. If Y is totally non-convex subset of [n]. Then each o € CT([n],Y) is an

idempotent of rank 1.

Proof. Notice that each element in CT ([n], Y) is a constant map of height 1 and as such is an

idempotent of rank 1.

Product of idempotents is not necessary an idempotent as demonstrated in the example below.
Example 4.10. In the semigroup CT([n], Y), the product of idempotents is not necessary

an idempotent. To see this, let (Howie, 1966) = {1,...,9}, Y = {1, 2, 3, 7, 8, 9} and choose

1 2 {3,...,9 1,5,9 2,4,6,8% {3,7 _
05:(1 5 { 3 }] and ,Bz({ 9} { 8 I 7}J elements of CT (Howie, 1966,



Y). Then clearly a and p are idempotents in CT (Howie, 1966, Y). The products

aﬂ:@ Z {3'"7"9}j is not idempotent.

Proposition 4.11. If Y is totally non-convex subset of [n]. Then the semigroup CT([n],
Y) is simple.

Proof. The result follows since each element in CT([n], Y) is of rank 1.

Theorem 4.12. Suppose Y is totally non-convex subset of [n]. If |Y | = r, then |CT([n],
)| =r.

Proof. Since Y has no sub-convex subset of order greater than or equal to 2, then CT([n],
Y) contains element of rank 1 and obviously there are r of them.

Remark 4.13. It is worth noting from the proceeding results that, the semigroup CT([n],

Y) is regular if Y is totally non-convex subset of [n], otherwise CT([n], Y) is not regular.

5. Green’s relations on the semigroup CT([n], Y)

Let S be a semigroup without identity element and S* be a monoid. The five equivalence
relations on S known as Green’s relations were first introduced by J. A. Green’s in 1995. The
primary aim of defining these relations is to study the structure of a semigroup S. These
relations are defined as follows. For a, b€ S, a £ b if and only if S'a = S'b (i.e., a and b
generates the same principal left ideal, here a and b are said to be £ related); a R b if and only
if aS' = bS! (i.e., a and b generates the same principal right ideal, here a and b are said to be R
related); a 7 b if and if S*aS' = S* bS* (a and b generate the same principal two sided ideal, in
this case, a and b are said to be 7 related).The relation H = LNR while the relation D is a
join of the relations £ and R i.e., D =L R. These relations are all equivalences on S. For
more details on Green’s relations we refer the reader to Green (1951); Higgins (1992);
Howie (1995); Ganyushkin and Mazorchuk (2009). The Green’s relations for the semigroup
CT, and some of its subsemigroups have been investigated in Umar and Zubairu (2018).
Here, we also deduce the characterizations for the Green’s relations on the semigroup CT ([n],

Y). Throughout this section, we will consider 1 < |Y | <n.

Now denote
e A B...- B
az(Al & "J and ﬁ:LBl ? "] 1< p<n). (5)
X X Xy Yio Yorr Yy

Before we begin our investigation, we first note the following results from Umar and

Zubairu (2018) which are found to be useful in what to follows.
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Theorem 5.1. (Umar and Zubairu, 2021), Corollary 5.3). Let «, f € CT, be as expressed
in equation (5). Then
() (o, p) € Lif and only if Ker a and Ker £ have convex refinement partitions, Ker y; and
Ker y, (for some y; and y, in CT,), respectively, such that there exists either a translation z; —
oi satisfying zijo = oiff or a reflection 7; = o..i+1 satisfying zia = os i foralli=1,...,s (s>
p), where Ty, ={ry, . . ., pand Ty, ={oy, . . ., os}, are the convex transversals of Ker y; and
Ker y,, respectively;
(ii) (a, B) € R if and only if ker a = ker £;
(iii) (o, p) € H if and only if ker o = ker g and Ker a and Ker g have convex refinement
partitions, Ker y; and Ker y;, (for some y; and y, in CT,), respectively, such that there exists
either a translation z; — o; satisfying zia = oif or a reflection z; = o4.i+1 satisfying zia = os.i+158
foralli=1,...,s(s>p), where Tys ={r3, . . ., 7y and Ty, = {0y, . . ., o5}, are the convex
transversals of Ker y; and Ker y,, respectively;
(iv) (o, p) € D if and only if there exist isometries 91 and 92 from Ker y; to Ker y, and from
Im a to Im f, respectively.
We now characterize the Green’s relations on the semigroup CT ([n], Y).

Theorem 5.2. Let a, f € CT ([n], Y). Then, « £ g if and only if there exist refinements
Ker y1, Ker y, (for some 1, y» € CT ([n], Y)) of Ker a and Ker p respectively, such that Ker
71, Ker y, have admissible transversals Ty; ={r1, 7o, . . ., 7}, Ty2 = {01, 02 . . ., 05} both
subset of Y or Ty; = Ty, = [n] with the property that there exists either a translation z; = o;
satisfying zia = iff or a reflection 7; = o5+ Satisfying zia = o foralli=1,...,s(s>p).
Proof. Let a, # € CT ([n], Y) be such that « £ 8. Then there exist y5, y, € CT ([n], Y)* such that
a =y and S = yoo.
Notice that, Im a, Im f €Y , and also a,  €CT, . Thus, by Theorem 5.1, Ker a and Ker g
have refinements partitions say Ker y; and Ker y,, respectively, (for some yy, y, € CT,) with
admissible transversals say Ty; ={1, 7o, . . ., s}, 12 ={o1, 00, . .., os} such that there exists
either a translation z; = g; satisfying zja = oif or a reflection 7; = os.j+1 Satisfying zia = os.iv1
forallie {1, 2,...,s}(s>p). Notice that, Ty; and Ty, are admissible, the maps

5, :[Al Az ASJ and &, :(Bl B Bs] are in CT,.

’Z'l ’z'z--. TS o-]_ 02--- GS

However, for d;, d, to be in CT ([n], Y), Im ¢, and Im J, must be subsets of Y (i.e., Toy = {z,

7, ...,y S Yand To, ={o1, 02, ..., 0} S Y) or Imyy, =1Im yp, =[n].
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Conversely, Suppose there exist refinements Ker y; and Ker y, (for some y;, y, €
CT([n], Y)) of Ker a and Ker p respectively, such that Ker y; and Ker y, have admissible
transversals Ty, ={z1, 7o, . . ., sy and Ty, = {o1, 0o, . . ., os}, respectively, both subset of Y or
Ty1 = Ty, = [n] with the property that there exists either a translation zj = o7 satisfying zjo =
oif or a reflection 7; » o5+ Satisfying rjo = os.ivfforallie {1,2,...,s} (s>p).

If Ty1 = Ty, = [n]. Then define y1 = y, = idpy . Thus, y1, 2 are in CT ([n], Y) and a = id[y S
= . Hence, a L B.

Now if there is a translation translation z; = ;i satisfying zia = i (i = 1,. . . ,S). Then

define

Al As--- Al B: B,--- B o )
71=[ oo jand yzz( P ].Then it is easy to see that y; and y, are in

Gl 02... O-s ’z'l Tz... Ts

CT(In], Y).
If there is a reflection 7; = o.j41 Satisfying o = o+ foralli € {1, 2, ..., s} (s> p).

Al A, Al B: B,--- Bs
B ]and 7/2:( P j.Then one can easily show

Then define y, =(
O's_l... O'l 'z' ’Z'S_l... Tl

(o}

S S

that y; and y, are contractions in CT ([n], Y). Hence, a £ .

Theorem 5.3. Let o, # € CT ([n], Y). Then a R g if and only if ker a = ker .
Proof. Let o, # € CT ([n], Y) and suppose o R . This implies that there exist y1, y» € CT([n],
Y)! such that « = By; and S = ay». Suppose (X, y) € ker a. Then x8 = x(ay1) = (xa)y1 = (va)ys =
Y(ay1) = yp. This implies that ker a < ker g. Similarly, ker g < ker a. Thus, ker a = ker f
follows easily.

Conversely, suppose ker o = ker 5. We may write a and S as

B B, --- B
N N L )
a a+1l--- a+s-1 b b+1.--b+s-1
12,..byb+1---b+s-2{b+s-1...,
{ } b+ +5 {b+s n}J and

Now define y, =
}/l( a a+l --a+s-2 a+s-1

{L2,.,a} a+1l---a+s-2 {a+s-1..,n} i
7/2:( b bl bis_? bas_1 ].Notlcethat,lmylzlma,Imyzzlmﬁ
and since Im ¢, Im € Y, we conclude that Im y1, Im y, € Y . Therefore, it easily follows that
y1, y2 € CT([n], Y). Thus, a R .
Theorem 5.4. Let a, f € CT ([n], Y). Then, a D g if and only if there exist isometries v,
and v, from Ker y; to Ker y, and from Im o to Im f, respectively.

Proof. The results follows easily from Theorem 5.2 and Theorem 5.3.

12



6. Conclusions

In this paper, we give a necessary and sufficient conditions for two semigroups of full
contraction mappings with a restricted range to be isomorphic. Also, we have shown that
whenever Y is a union of nonempty convex subsets B;(i € {1,2,3,...,p < n}) satisfying
certain conditions, the semigroup CT([n], Y) can be written as the union of left ideals of
CT([n],Y). Further, we characterized the regular elements for the semigroup CT ([n], Y), and
also investigate the conditions that make the semigroup CT([n], Y) regular. Moreover, we

characterized all its Green’s equivalences.
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